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Abstract-A combined laboratory and numerical investigation of the purging of density stabilized basins 
has been undertaken. The laboratory investigation was carried out in a flume into which a false floor 
containing a cavity filled with dense fluid was set. The fluid in the cavity was then set into motion and 
ultimately purged by a fresh water overflow. The experiment was simulated numerically by a direct finite 
volume solution of the Navier-Stokes equations plus solute transport equation using the Boussinesq 
buoyancy approximation. The experimental results have been used to validate the numerical method, and 
a number of flow features have been identified. These include a large amplitude internal wave, a travelling 
wave and a vortex structure in the cavity. All these features contribute to the efflux of dense fluid from the 

cavity. 

1. INTRODUCTION 

UNDERSTANDING the mechanics of purging of density 
stabilized ponds by a lighter overflow is important in 
a number of areas of geophysical fluid mechanics. For 
instance, it is common, in regions of annual flow and 
relatively saline water tables, for pools of salt water 
to accumulate in the beds of rivers. During low flow 
periods the water table will saturate the pools in the 
river bed, and the small river flow will be unable to 
purge the denser fluid. A similar phenomenon can 
occur at river mouths and in estuaries where tidal 
intrusions can provide the saline water that fills the 
irregularities in the river bed. 

The fluid forming such saline pools in the inland 
waters of Australia is also typically hypoxic, rendering 
them uninhabitable by fish and other aerobic organ- 
isms; hypoxia renders bed substrates and organic 
debris inaccessible for cover, feeding or resting, and 
probably reduces secondary production [I]. Under- 
standing the fluid mechanics involved in the purging 
of such pools is therefore an important factor in the 
development of a river management strategy. 

In the present investigation a combined numerical 
and experimental study has been undertaken as a first 
step towards developing an understanding of the fluid 
mechanics involved in the purging process. It is antici- 
pated that the numerical model will be the primary 
investigative tool, with the experimental results being 
used to validate the numerical results at a number of 
points in the solution domain in order to maximize 
the range of parameters studied. 

The numerical model solves the Navier-Stokes 
equations plus the solute transport equation in two 
dimensions using a finite-volume scheme, described in 

Section 2. The model, at its present stage of devel- 
opment, is suitable only for laminar flows and for 
pools in the form of rectangular cavities. 

The experimental apparatus, also described in Sec- 
tion 2, consists of a laboratory flume modified with a 
false floor into which a transparent box was fitted 
creating a cavity, the liquid contents of which could 
be set in motion by the channel flow. Initially, salt 
water was in the basin and the fresh water in the 
channel was abruptly set into motion. Unfortunately 
the construction of the flume was such that it was 
impossible to obtain a low Reynolds number laminar 
flow for direct comparison with the numerical model, 
and thus comparison of the small scale motion at this 
stage would be inappropriate. None the less a quali- 
tative comparison indicates that the model accurately 
predicts the large scale features of the flow, which for 
the early part of the development may be summarized 
as follows. 

(I) The overflow initially pushes out a large splash 
of the denser cavity fluid. 

(2) Vorticity shed from the upstream corner of the 
cavity forms a vortex which pulls lighter fluid into the 
cavity and mixes it with the denser fluid there, with 
an accompanying secondary splash. 

(3) A continuing seiching in the cavity ejects fluid 
from the resulting intermediate density layer. 

(4) The development of a circulatory m&ion in 
the upper portion of the cavity slowly transports the 
denser liquid below it by shear stresses and molecular 
diffusion. 

Stages (I), (2) and (3) occur very rapidly, with (4) 
taking typically ten times as long. 
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Reynolds number 
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NOMENCLATURE 

x horizontal distance from bottom left 
corner of duct 

J vertical distance form bottom left corner 
of duct. 

Greek symbols 
6 interface drop 
K thermal diffusivity 
1 internal wavelength 
v  kinematic viscosity 

P density 

PC initial density in cavity 

Pd initial density in duct 
Ap initial density variation, (pC--pd)/pd 
a solute. 

In the remainder of the paper the numerical and 
experimental methods are presented in Section 2. The 
results are presented in Section 3, with a discussion in 
Section 4 and the conclusions in Section 5. 

2. NUMERICAL AND EXPERIMENTAL 

METHODS 

2.1. Governing equations 
The governing equations are the Navier-Stokes 

equations and the solute transport equation, which 
are expressed in incompressible and non-dimensional 
form in euclidean coordinates as follows : 

u, + uu, + VU! = - 9, + ; (U,,, + UJ (I ) 

v,+uv,+vv,.= -P.v+;(V,.+V,,)-g$ 

(2) 

u,+v,.=o (3) 

a, + Ua, + Va,, = A. (a,, + a?.,.) (4) 

where subscripts indicate partial differentiation. 

Surface 

The relation between the solute concentration a and 
the density p is p = pwolcr +a. In the above equations 
length is non-dimensionalized by H, the height of the 
duct, average velocity by 0, time by H/C? and the 
solute by aClvllY -aduc,. 

2.2. Discretization 
The domain and distribution of points are shown 

in Fig. I. As can be seen, the domain consists of a 
square cavity, initially containing the denser fluid, 
beneath a rectangular duct, initially containing the 
lighter fluid. The boundary consists of the free surface, 
the inlet at the left hand end of the duct, the exit at 
the right hand end, and the bottom. A non-uniform 
discretization on a rectangular grid is used to place 
the greatest resolution in the boundary layer regions 
and at the cavity-duct interface. Variables are then 
stored at nodal points on a non-staggered grid. The 
index i is used to indicate location in the x direction 
and j indicates location in the y direction. Values of 
variables at the nodal point (i, j) are given as, for 
instance xi, y’, U” and so on. As a finite-volume 
method is used no nodes lie on the boundaries. Bound- 
ary values are set by including an extra point outside 
the boundary with a prescribed value. The value at 

I- 2 
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FIG. 1. Computational domain with discretization. 
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the boundary is then the average of that point and the 
nearest point in the domain. When values of depcn- 
dent variables are required at other than nodal points 
they are obtained by linear interpolation. 

Finite volumes are used to convert differential terms 
in the governing equations in the following way. All 
second derivatives are approximated by second-order 
central differences as 

Cl = (L/2+I/Af), G2 = (-L/2+l/Af) and L is in 
discrete form a block quintadiagonal matrix with 
components obtained from the differencing given 
above which is inverted using an alternating direction 
implicit scheme. The best available guess is used for 
P”+ ‘I’.“. Next a correction for Pis obtained by solving 
the following Poisson equation for PC, the pressure 
correction : 

u l+I-“’ 
U,,(s’,y’) = Asi+ I - -~ 

where As’ = As x As, AX’ = Y-s ’ and SD is a 
finite difference operator. 

Derivatives occurring in convective terms are 
approximated using a third-order upwinded and 
bounded scheme [2], as follows : 

W,(.u’,y’) = (F’+ ’ Q-F’- ’ ‘.‘)~/(A.Y’+ ’ +Ax’) 

where 

F’+ I:2.1 = “‘+ 1!2(“‘+ I.2 -SDL~“(AS’+‘)~(I/~+U)) 

assuming Cl ‘+ “‘J is positive. a is then obtained as 

[ 

ill+ ‘j2 -3/8(2fi’+ 1) 
c(= 

2cJ’- 1 1 (5) 
with 

oi = ui- L/‘- ’ 
U” I _ “‘& I (6) 

and 

f- fit if 0’4 [0, I] 

II - “i+ 112 _ 30’ if 0’~ [0, l/6] 

1 if I?‘E [5/6, I] 
(7) 

3/8(2@+ 1) if fi’~ [l/6,5/6]. 

The use of the bounded scheme, which is seen to be 
a modification of the well known QUICK scheme [3], 
has been found to be essential for obtaining high 
Reynolds number simulations of the flow. When a 
conventional third-order upwinding scheme, such as 
QUICK, was used it resulted in severe oscillations at 
the interface, which ultimately caused the solution to 
collapse. This is believed to be due primarily to the 
high flow to grid skewness present in this flow that 
occurs as the interface is distorted. 

2.3. Integration 
The above equations are integrated numerically in 

the following way. All variables are known at time 
step /“. First an initial estimate for (V, I’)“+ ’ is 
obtained, denoted as (V, I’)“+ I.“’ with m = 0, from 

G 1 (U”+ ‘.“I 
) = Q(U”) _ (P” I _ pi- I )j.n+ lmll/ 

(AX’+ ’ + A?) 

G 1 (v”+ ‘.“’ 
) = (72(p) _ (pj+ I -pj- I)i.n+ 1/2m/ 

(AJJ+ ’ +AJJ’). 

= (of+ 112 _ of- '/?)jJl+ b12/(A,y’+ I +&J) 

+(vI+ I'? _ p- '/?)W+ ‘,“‘2/(4,,/+ ' +Ay,) (8) 

where g is the inverse of the diagonal of G I. As can 
be seen, this is a finite-volume discretization about the 
point (i. j) consisting of, in the .Y direction for 
example, the difference of the terms g(Pc), and 0 at 
the points x = s’+ I”, x = s’- ‘!I, and similarly for the 
.r terms. 

pa+ li2.m 
3 CJ 

m+ I.#11 
1 v+ ‘.m are then corrected as 

“‘./A+ I.nt+ I _ “LA”+ 1.n: - -gi(pc’+ ’ -PC’- ‘)/ 

(As’+ ’ + Ax’) 

with Rx an under-relaxation factor for the pressure, 
which for the present simulation was set to 0.6. 

The terms c’ and P are interpolated velocities 
defined in the following way : 

(ji+ ll2.J = (L/I+ I + u’)/p+R’+ 1124 

(ij+ l/U = (V” I + p)‘p+R,+ Il2.i. 

The R terms are then defined to be 

The R terms as defined above ensure the discretization 
is strongly elliptic and allow the non-staggered mesh 
to be used. Without these terms the discrete scheme 
is non-elliptic and its use will result in a grid scale 



522 S. W. ARMPIELD and W. DEULER 

oscillation of the pressure field and subsequent break- 
down of the solution. The use of a non-staggered 

(5) Re = 10000, RN = 3.75 x IO’“. Ap = 0.005 
(6) Re = 10000, Rn = 2.2x IO’“, Ap = 0.003 

scheme, as compared to a conventional staggered 
scheme, where the discrete ellipticity requirement is 

with the solute assumed to be salt and thus the Prandtl 

automatically satisfied, leads to an improved efficiency 
number, Pr, set to 750. 

in coding and running due to the fact that operators 
The internal Froude number based on the cavity 

that are identical in continuous form are then identical 
height may be obtained from the relation 

in discrete form [4]. 

2.4. Boundury and inirial ~rhrrs 
At the inlet a parabolic velocity profile is specified 

while zero downstream variation is assumed at the 
outlet. The bottom is non-slip and the surface is zero 
shear. For the solute the surface, bottom and outlet 
all have zero normal gradient while at the inlet the 
value is set to zero. The normal derivative of the 
pressure correction is set to zero everywhere on the 
boundary, while the pressure, which is obtained from 
the pressure correction at all interior points, is 
obtained on the boundary using a second-order extra- 
polation from the interior points. At the interior cor- 
ners a separate extrapolated pressure is obtained for 
the pressure used in the x-derivative at the adjacent 
exterior .u-node and for the pressure used in the y- 
derivative at the adjacent exterior?,-node. Initially the 
fluid is at rest everywhere. The fluid in the cavity is at 
a non-dimensional solute concentration of I while 
that in the channel is at a concentration of 0. At I = 0 
the parabolic velocity profile is switched on at the 
entrance and the flow is allowed to dcvclop. 

2.5. Experinletrtal merhod 
A laboratory flume I1 m long was modified with a 

false floor to create a duct of cross-section IO cm high 
and 29 cm wide, A square cavity of dimension Il.6 
cm x Il.6 cm was set into the false floor of the flume 
and filled with salt water at a predetermined density 
with food colouring at a concentration of about 2 
parts per thousand mixed in as a marker, while the 
duct was filled with fresh water. The experiment was 
then left to stand for 2 h to allow any circulation to 
diffuse out. 

At time I = 0, water was admitted to the flume 
through a flow straightener and turbulence damper, 
setting in motion the upper layer and ultimately purg- 
ing thereby the dense fluid in the cavity. During the 
development of the flow photographs were taken at 
regular intervals, with the marker added to the dense 
fluid acting to make the purging process visible. 

3. RESULTS 

Numerical results have been obtained for Reynolds 
number-Rayleigh number pairs and corresponding 
density variation values of 

(1) Re = 700, Ra = 8 x 106, Ap = 1 x IO-’ 
(2) Re = 350, Ra = 8 x 106, Ap = I x lo-’ 
(3) Re = 350, Ra = 4 x 106, Ap = 5 x 10m6 
(4)Re=175,Ra=8x106,Ap=Ix10-s 

where /I, = I. 16 is the height of the cavity non-dimen- 
sionalized by H, the duct height. Froude numbers for 
each of the cases arc then obtained as 

(I) Fr = 6.2 
(2) Fr = 3.1 
(3) Fr = 4.4 
(4) Fr = 1.6 
(5) Fr = I.31 
(6) Fr = 1.71. 

The parameter values for cases (l)-(4) were chosen 
to give a range of Froude numbers all greater than 
one, but with Reynolds numbers low enough to cor- 
respond to a laminar flow regime. Cases (5) and (6) 
were chosen to correspond to the experimental data. 

The results arc presented in dimensional form. 
based on a duct height of 10 cm and a square cavity 
of I I .6 x I I .6 cm’. for velocity time series, Nusselt 
number time series, density contours and stream func- 
tion contours. Thus for case (I) Re = 700 corresponds 
to an inlet velocity of 7 mm s-‘, and for case (2) 
Re = IO 000 corresponds to an inlet velocity of IO cm 
S ‘. As the velocity variation in the duct is an order- 
of-magnitude greater than that in the cavity it has 
been necessary to set upper and lower bounds to the 
stream function contours plotted to make clear the 
flow structure in the cavity, effectively removing the 
streamlines representing the flow in the duct from the 
figures. 

Figures 2(a) and (b) show the density contours and 
streamlines at t = 21 s after initiation of the Row for 
case (I). At this time a small amount of denser fluid 
has been pushed out of the cavity by the overflow, 
while at the inlet corner of the cavity the interface has 
been pushed down a corresponding amount, with a 
small crest visible projecting in the downstream direc- 
tion. The streamlines show that a vortex has formed 
centered just downstream of the cavity inlet corner. 
Evidently the crest observed in the density contours 
consists of dense fluid that is being rolled up by the 
vortex. As is also seen, a number of streamlines from 
the duct overflow enter and traverse the cavity, exiting 
at the downstream corner. It is these streamlines that 
produce the splash of fluid observed in the density 
contours. 

Figure 3(a) shows the density contours at t = 66 s 
after initiation. The splash of denser fluid has now 
completely exited the cavity and is being transported 
to the exit by the overflow, while the crest initially 
located at the inlet corner has moved across the cavity 
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FIG. 2(a). Density contours for case (I) at I = 21 s. 

FIG. Z(b). Stream function contours for case (I) at I = 21 s 

until it has almost reached the exit wall. At the same 
time the crest has grown considerably in amplitude 
and continued to roll up. The streamlines at t = 66 s 
(Fig. 3(b)) show that the small vortex located at the 
cavity entrance has now grown to encompass almost 
the entire cavity, with the centre located just past the 
cavity centreline. Once again it is clear that the crest 
of denser fluid is being rolled up by the vortex. No 
streamlines from the overflow traverse the cavity at 
this stage. consistent with the observation above that 
the splash has completely exited the cavity. 

At I = 133 s after initiation (Figs. 4(a) and (b)), the 
crest has hit the cavity exit corner, with a substantial 
part of it splashing out as a result. The remainder of 
the crest, together with an enveloped volume of fluid 
from the light overflow, has been pulled down into 
the cavity, forming a large region of instability. The 

streamlines indicate that the enveloped volume of light 
fluid is located at the centre of the vortex. which still 
encompasses almost the entire cavity. 

By 876 s after initiation (Figs. S(a) and (b)) a 
strongly mixing region is seen to have formed in the 
upper part of the cavity, with a particular con- 
centration of mixing near to the exit wall. The inter- 
face between the mixing region and the unmixed 
denser fluid has been pushed down to approximately 
half the height of the cavity. The streamlines show 
that the vortex is now confined to the mixing region, 
with its centre located near to the exit wall, while a 
weak counter-rotating vortex has formed in the lower 
unmixed part of the cavity. 

Results obtained for cases (2), (3) and (4). which 
are not shown, indicate a similar development; that 
is, the formation of the initial splash and a crest that 

FIG. 3(a). Density contours for case (I) at I = 66 s 

‘Tq=- 
FIG. 3(b). Stream function contours for case 
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FIG. 4(a). Density contours for case (I) at I = 133 s. 

I I 

FIG. 4(b). Stream [unction contours for case (I) at I = 133 s. 

FIG. S(a). Density contours for case (I) at I = 876 s. 

FIG. 5(b). Stream function contours for case (1) at I = 876 s. 

rolls across the interface with a vortex that originates 
at the cavity inlet corner. The amplitude of the crest 
was observed to reduce with the Froude number and 
for case (4) was only just discernible. 

Figure 6 shows a time series of the vertical velocity 
taken at a location 0.17 of the cavity width in from 
the inlet cavity wall and 0.78 of the cavity height 
up from the cavity bottom, for case (1). There is 
a noticeable oscillation in the signal, which decays 
rapidly. The period of the oscillation initially increases 
rapidly, but then becomes constant with a period of 
approximately 681 s. Figure 7 is a time series of the 
Nusselt number calculated on a vertical line across 
the duct directly downstream of the cavity, for the 
early part of the flow. The Nusselt number, defined 

0.06 r 

0.04- 

> 0.02- 

o.oo- 

-0. o+ iooo a000 3000 

FIG. 6. Time series of vertical velocity in the cavity at s = 0. I7 
of the cavity width from the cavity inlet wall and JJ = 0.78 

of the cavity height from the cavity bottom, for case (I). 
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FIG. 7. Time series of Nusselt number on vertical line down- 
stream of the cavity for ease (I). 

as 

is primarily a representation of the dense fluid 
advected out of the cavity by the overflow, as there is 
little diffusion. Three peaks are present in the Nusselt 
number plot, of decreasing magnitude, with the third 
being barely discernible. The initial, and most sig- 
nificant, peak is associated with the splash, while the 
second is associated with the crest striking the exit 
corner. The third peak is possibly associated with a 
seiching effect that will be discussed later. 

Figure 8 is a time series of the Nusselt number at 

I 
OO iooo 2000 

Time lsecondsl 

FIG. 8. Time trace of Nusselt number with enlarged vertical 
scale on vertical line downstream of the cavity for case (I). 

the same location as that given above. but for the full 
development of the flow and with an enlarged vertical 
scale. The initial peaks discussed above are not dis- 
cernible here due to the changed scale. Of interest is 
an oscillation, decaying rapidly, with, in the later part. 
a period approximately the same as that observed 
above in the velocity signal (Fig. 6). 

Figures 9-16 contain similar results to those pre- 
sented above, but for case (5) for which experimental 
results were also obtained and which are compared to 
the numerical results. Figure 9(a) shows the density 
contours at time 1.5 s after initiation, together with 
the corresponding experimental photograph. The 
numerical simulation accurately reproduces the fea- 
tures of the flow, even though parts of the exper- 
imental flow are turbulent, while the simulation is 

FIG. 9(a). Density contours for case (5) at I = I.5 s with the corresponding experimental result 

I 

FIG. 9(b). Stream function contours for case (5) at t = 1.5 s. 
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FIG. IO(a). Density contours for case (5) at I = 3.5 s with the corresponding experimental result. 

FIG. IO(b). Stream function contours for case (5) at I = 3.5 s. 

laminar. Once again a large splash of fluid is pushed 
out of the cavity by the overflow while a crest forms 
at the inlet corner. The streamlines presented in Fig. 
9(b) show that the crest is associated with a vortex 
that has formed at the inflow corner of the cavity, 
while the splash is associated with streamlines that 
pass from the overflow into the cavity and then out 
again at the downstream corner, similar behaviour to 
that observed in case (I) above. 

By time I = 3.5 s after initiation, it is seen in the 
density contours shown in Fig. IO(a) that the crest 
has travelled across the cavity and is about to strike 
the far wall. It is also seen that additional smaller 
crests have formed behind the first crest. In the exper- 
imental result (also shown in Fig. IO(a)) there is an 
indication of additional crests, although the strong 
mixing makes them difficult to discern. Once again 
there is a good correspondence between the simulation 
and the experiment. The streamlines at this time, pre- 
sented in Fig. IO(b), show that the main vortex associ- 
ated with the initial crest is now centred near to the 
exit wall of the cavity. Additional smaller vortices 
associated with the additional crests are also visible. 

In the further development of the flow at t = 4.5 s, 
shown in Fig. 1 I, it is seen that the initial crest has 
struck the exit wall of the cavity and engulfed a volume 
of lighter fluid. The two subsequent crests have con- 
tinued to travel across the cavity. Once again this 
is a good representation of the experimental results, 

although the subsequent crests arc again not easily 
discernible in the experiment. The streamlines show 
that the initial vortex is now much contracted, and is 
associated fully with the engulfed volume of light fluid. 
It is also clear that the subsequent crests are associated 
with small vortices. 

In Fig. 12(a), t = 61 s after initiation, it is seen that 
a mixed layer has formed, with a well defined interface 
between it and the unmixed dense fluid remaining in 
the cavity. The interface and mixed region has a 
second mode structure. The streamlines (Fig. 12(b)) 
show that two counter-rotating vortices are located in 
the mixed layer region, while a single vortex is located 
in the unmixed denser fluid. The two vortices in the 
mixed layer region are characteristic of a second mode 
internal wave, while at this stage a cavity scale vortex 
has developed in the unmixed fluid. 

In Fig. I3 time series of the vertical velocity in the 
cavity at two locations are shown. One location is 
0.086 of the cavity width in from the inlet wall and 
0.78 of the cavity height above the floor, while the 
other is at the same height but on the centreline of the 
cavity. As can be seen, both signals show a regular 
oscillation approximately 180” out of phase, with a 
period of 6 s. A node with minimum amplitude has 
been found to lie between the two locations shown 
which, taken together with the phase shift, indicates 
that the signal is produced by a second mode internal 
wave. 
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FIG. I I (a). Density contours 

FIG. I l(b). Stream function contours for case (5) at ( = 4.6 s 

Figure 14 shows a time series ofthe Nusselt number. the flow. A regular oscillation is seen with the same 
As before this is primarily a measure of the advection period as that of the second mode signal observed 
of dense fluid out of the cavity, and once again it is above in the velocity time series (Fig. 13). 
apparent that the advection is dominated by the initial 
splash, represented by the first peak in the plot, fol- 
lowed by the advection resulting from the initial crest 

4. DISCUSSION 

striking the exit wall of the cavity, represented by the The results presented in the previous section indi- 
second crest. Figure I5 shows the Nusselt number on cate that the dominant features in the early part of 
an enlarged vertical scale for the full development of the flow development are the initial splash and the 

I 

FIG. 12(a). Density contours for case (5) at I = 61 s 

FIG. 12(b). Stream function contours for case (5) at I = 61 s. 
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FIG. 13. Time series of vertical velocity in the cavity at 
x = 0.086 of the cavity width from the cavity inlet wall and 
~3 = 0.078 of the cavity height from the cavity bottom (solid 
line) and the same height and half the cavity width (dashed 

line), for case (5). 

crest travelling across the cavity and associated sec- 
ondary splash. Of these two features the initial splash 
contributes by far the largest component to the time 
rate of transport of dense fluid from the cavity into 
the duct. The initial splash is generated by the impul- 
sive start-up of the system in the following way. 

Immediately after start-up and away from the 
entrance the fluid responds inviscidly. Thus the vel- 
ocity field in the cavity will be that of potential flow 
with a line source at the entrance and a line sink at 
the exit. This is readily seen in the results where, in 
Fig. 2(b), streamlines are observed passing from the 
overflow into the cavity and out again. The resulting 
velocity imparted to the fluid by the impulsive start- 
up is enough to carry some of the dense fluid out of 
the cavity. It is this fluid that forms the initial splash. 

This hypothesis may be used to construct an 
approximate relation for the drop in the level of the 
interface resulting from the fluid ejected from the cav- 
ity in the splash. It seems reasonable to assume that 6, 
the interface drop non-dimensionalized by the cavity 
height, will be a function of the cavity Froude number, 
giving 

6-kFr (10) 

:.I 
LO 20 30 40 

-rime becondsl 

FIG. 14. Time series of Nusselt number on vertical line 
downstream of the cavity fbr case (5). 

FIG. 15. Time series of Nusselt number with enlarged vertical 
scale on vertical line downstream of the cavity for case (5). 

where k is a constant and Fr is the cavity Froude 
number as defined in Section 3. The linear assumption 
cannot be true for all Fr, as it would imply that for 
large enough Fr, 6 could be greater than the cavity 
height. Thus, although for the present range of Froude 
numbers considered the linear assumption gives good 
results, a more complex relation would have to be 
developed to cover all possible Froude numbers. 

The six cases presented in this paper have interfacial 
drops resulting from the initial splash as follows : 

Case (I) 6 = 0.43 
Case (2) 6 = 0.23 
Case (3) 6 = 0.28 
Case (4) 6 = 0.1 I 
Case (5) 6 = 0.09 
Case (6) 6 = 0.14. 

Figure I6 shows 8 plotted against Fr. As can be 
seen, the points fall approximately on a straight line, 
giving k = 0.066. Further points will need to be 
obtained for different aspect ratio cavities to verify 
this scaling formula; however, as a rule of thumb 
indicator for the square cavity it appears to be 
satisfactory. 

m 

FIG. 16. Plot of interfacial depth 6 against Fr for cases 
(l)-(6). 
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The second feature, the crest. which contributes a 
much smaller amount to the purging of the cavity 
than does the splash. is associated with the formation 
of a vortex in the following way. At start-up a vortex 
sheet lies along the bottom of the duct which, as the 
flow develops. diffuses in the normal way to produce 
a vortex layer. Thus initially the inlet corner of the 
cavity is a point source of vorticity, which is sub- 
sequently transported across the cavity by the over- 
flow. The point source of vorticity enlarges as the 
vorticity boundary layer develops, resulting in the 
development of the observed vortex. The point source 
lies initially at the interface, and so as it diffuses it 
entrains both light and heavy fluid. The entrained 
heavy fluid forms the resulting crest. The vortexcrest 
structure is then advected across the cavity by the 
overflow. 

When the vortex strikes the exit corner the crest is 
high enough so that it at least partly passes out of the 
cavity, resulting in the second peak seen in the Nusselt 
number trace. The remaining dense fluid in the crest 
has not been lifted high enough to exit the cavity, and 
subsequently drops back down, engulfing a volume of 
lighter fluid. The dense and light fluid are then mixed 
by the vortex. The remainder of the dense fluid in the 
cavity is too stable to be fully turned over, and thus 
the initial cavity scale vortex contracts to fill only the 
upper part of the cavity. In the remainder of the cavity 
a weak counter-rotating vortex forms. 

In the higher Reynolds number flows additional 
small crests and associated vortices were observed 
behind the main crest. It is suggested that these are 
the result of a Kelvin-Helmholtz type instability 
forming on the vortex sheet. For the lower Reynolds 
number the wavelength of such an instability was long 
enough so that it was not observed. 

The features described above occur early in the 
development of the flow and contribute by far the 
major component to the rate of efflux of dense fluid 
from the cavity. After the passage of the crest and the 
second splash an oscillatory signal is present in the 
velocity time series, as shown in the previous section. 
The velocity signal has a decaying amplitude and, in 
the later part of the flow development, an approxi- 
mately constant period. This oscillation is most likely 
the result of a cavity scale seiche. The period of such 
a seiche may be obtained from the formula [5] : 

p = /I F (p, coth kh, +pd coth &,) - ’ 1 
- i,* 

. 

(11) 

For case (1) this gives a period for the tirst mode wave 
(wavelength (I) = 2/r,, k = n/h,) of 126 s. For case 
(5) the period of the second mode internal wave is 
obtained from the above relation as p = 5.4 s. The 
prediction for case (5) is in good agreement with the 
observed period, while that for case (1) is poor. It is 
likely that in case (1) the fluid is far from the two- 
layer form on which the above equation is based. 

Additionally the relatively short data set (with respect 
to the period) and the rapid decay combine to make 
accurate measurement of the period difficult. For case 
(5) the data set is long with respect to the period and 
the decay is small which, combined with the reason- 
able two-layer structure observed in the density con- 
tours in the previous section, suggest that if the 
observed wave is a seiche the above equation should 
be a good predictor, as is the case. 

The oscillations in the Nusselt number trace for the 
full development of the flow clearly have the same. 
period as the velocity signal, and therefore it is sug- 
gested that they are the result of the seiche bringing 
denser fluid up to the overflow, where it is sub- 
sequently advected away. There is an indication of a 
possible additional mode in the lower Reynolds num- 
ber case, which is most likely the result of, initially, 
dense fluid being brought up by both the forward and 
backwards seiche. There is also some indication of 
another mode in the higher Reynolds number signal ; 
however, there the dominant signal is clearly that of 
the second mode wave acting at the exit wall of the 
cavity. 

After the features described above have occurred 
the interface continues to drop until finally the entire 
cavity is purged. This later part of the flow develop- 
ment has not yet been studied in detail numerically; 
however, the experiments have been conducted and 
give a good indication of the method of purging the 
remainder of the cavity. The vortex that is located 
in the mixing region continues to be driven by the 
overflow. At the same time turbulent mixing occurs 
at the interface. The resulting fluid is transported to 
the mouth of the cavity by the vortex, where it is 
advected downstream. This process produces a much 
smaller efflux of fluid than the features described 
above, and thus the purging of the remainder of the 
cavity is relatively slow. 

5. CONCLUSIONS 

A comparison of experimental and numerical 
results has demonstrated that the early part of the 
purging of a density stabilized basin can be quali- 
tatively well predicted using the finite-volume scheme 
described in Section 2. The numerical scheme has been 
used to produce results for a range of parameter values 
to allow the dominant parameter independent fea- 
tures of the flow to be identified and studied in detail. 
The existence of similar features over the range of 
values tested indicates they are not grid-dependent 
effects. 

The early part of the flow has been shown to be 
dominated by the development of a splash resulting 
from the impulsive start-up. This short-lived feature 
carries a substantial amount of dense fluid out of the 
cavity, producing a time rate of efflux two orders of 
magnitude greater than any other feature in the flow, 

resulting in a sudden lowering of the interface. The 
amount of fluid ejected by the splash has been related 



530 S. W. ARMFIELU and W. DEBLER 

to the internal cavity Froude number via the cavity 
length scale. The accurate results achieved by this 
approximation indicate that it is a good predictor 
for the square cavity; however, additional testing is 
required at different aspect ratios. 

Subsequent to the splash a crest travels across the 
cavity mouth resulting in, when it strikes the far wall 
of the cavity, a second, albeit much smaller, peak in 
the efflux of dense fluid. The crest is associated with 
the development of a vortex layer on the floor of the 
duct and is formed by the rolling up of the interface 
in a vortex that is generated at the inlet comer of 
the cavity and then travels across the interface. At 
the higher Reynolds number additional crests were 
observed ofa smaller amplitude behind the main crest. 
It is suggested that these may be the result of a Kelvin- 
Helmholtz type instability of suitable length scale. 

After the effluxes caused by the splash and crest the 
internal wave is the major modulating factor on the 
Nusselt number. Thus the seiching carries dense water 
up to the mouth of the cavity where it is advected 
away by the overflow. As a result of this process the 
modal activity observed in the cavity is also observed 
in the Nusselt number. 

The internal waves ultimately die out and the 
remainder of the cavity is then purged by mixed fluid 
being transported to the top of the cavity by a vortex 
that is located in the mixing region. This later period 
of purging is poorly predicted by the present scheme, 

most probably because the mixing is then dominated 
by small scale effects that are not accurately resolved. 
It is suggested that a large eddy simulation scheme is 
necessary to satisfactorily predict the later part of the 
flow. Such a scheme is currently under development. 
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